10MHz, RRIO, CMOS Operational Amplifier for Cost-Sensitive Systems

General Description

The ET8560X series are low voltage (1.8V to 5.5V) operational amplifiers included single-channel (ET85601) and dual-channel (ET85602) and quad-channel (ET85604) with rail-to-rail input and output swing capabilities. These devices are highly cost-effective solutions for applications where low-voltage operation, a small footprint, and high capacitive load drive are required. Although the capacitive load drive of the ET8560X is 100 pF, the resistive open-loop output impedance makes stabilizing with higher capacitive loads simpler.

The ET8560X are specified for the extended industrial/automotive temperature range (-40°C to +125°C).

The ET85601 single amplifier is available in SOT23-5 and SC70-5 packages.

The ET85602 dual amplifier is available in MSOP8, SOP8 and TSOT23-8 packages.

The ET85604 quad amplifier is available in SOP14 and TSSOP14 packages.

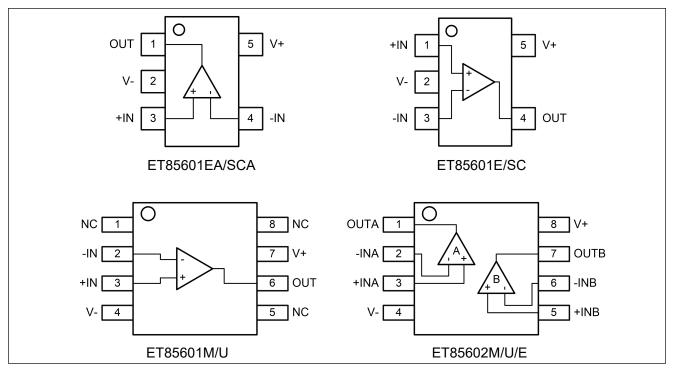
Features

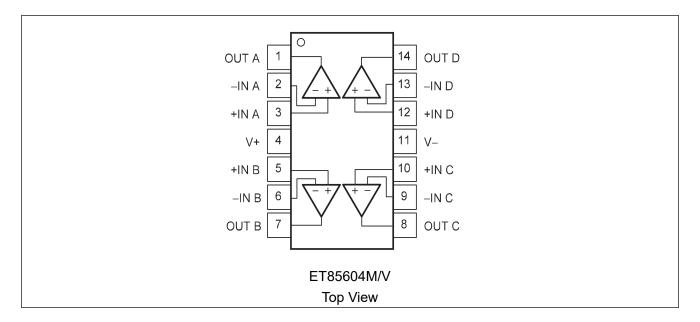
- Low offset voltage: ±0.3 mV (Typ)
- Unity-gain bandwidth: 10 MHz (Typ)
- Low broadband noise: 10 nV/ \sqrt{Hz} (Typ)
- Low input bias current: ±1 pA (Typ)
- Low quiescent current: 550 µA (Typ)
- Rail-to-rail input and output
- Unity-gain stable
- Internal RFI and EMI filter
- Operational supply voltage range 1.8 V to 5.5V
- Easier to stabilize with higher capacitive load due to resistive open-loop output impedance
- Extended temperature range: -40°C to 125°C

Applications

- Temperature sensors
- Smoke detectors
- Wearable devices
- Laptop computers
- Sensor signal conditioning
- Power modules
- Active filters
- Low-side current sensing

Device information


ET 8560 X1 X2


X Channel number		
1	Single channel	
2	Dual channel	
4 Quad channel		

<u>X</u> ② Package			
М		SOP8/SOP14	
U		MSOP8	
V		TSSOP14	
E	EA	SOT23-5	
SC	SCA	SC70-5	

Part No.	Package	MSL
ET85601E / ET85601EA	SOT23-5	3
ET85601SC / ET85601SCA	SC70-5	1
ET85601M / ET85602M	SOP8	3
ET85601U / ET85602U	MSOP8	3
ET85602E	TSOT23-8	3
ET85604M	SOP14	3
ET85604V	TSSOP14	3

Pin Configuration

Pin Function

	Pin Number	Symbol	Descriptions	
	1	NC	1	
	2	-IN	Inverting input	
	3	+IN	Non-inverting input	
ET85601M ET85601U	4	V-	Negative supply	
E1030010	5	NC	1	
	6	OUT	Output	
	7	V+	Positive supply	
	8	NC	1	

	Pin Number	Symbol	Descriptions
	1	OUT	Output
ET85601EA	2	V-	Negative supply
ET85601SCA	3	+IN	Non-inverting input
	4	-IN	Inverting input
	5	V+	Positive supply

	Pin Number	Symbol	Descriptions
ET85601E ET85601SC	1	+IN	Non-inverting input
	2	V-	Negative supply
	3	-IN	Inverting input
	4	OUT	Output
	5	V+	Positive supply

	Pin Number	Symbol	Descriptions
	1	OUTA	Output
	2	-INA	Inverting input
ET85602M	3	+INA	Non-inverting input
ET85602U ET85602E	4	V-	Negative supply
	5	+INB	Non-inverting input
	6	-INB	Inverting input
	7	OUTB	Output
	8	V+	Positive supply

	Pin Number	Symbol	Descriptions
	1	OUTA	Output
	2	-INA	Inverting input
	3	+INA	Non-inverting input
	4	V+	Positive supply
	5	+INB	Non-inverting input
	6	-INB	Inverting input
ET85604M ET85604V	7	OUTB	Output
E105004V	8	OUTC	Output
	9	-INC	Inverting input
	10	+INC	Non-inverting input
	11	V-	Negative supply
	12	+IND	Non-inverting input
	13	-IND	Inverting input
	14	OUTD	Output

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Parameter	Rating	Unit
Supply Voltage:(V+) - (V-)	0~6	V
Common-mode Input Voltage ⁽¹⁾	(V-)-0.5V to (V+)+0.5	V
Differential Input Voltage ⁽¹⁾	(V+) - (V-)+0.2	V
Signal input pins Current ⁽¹⁾	-10~10	mA
Output short-circuit ⁽²⁾	Continuous	mA
ESD (Human Body Model)	±2500	V
ESD (Component Discharge Model)	±1000	V
Storage Temperature Range	-65 to +150	°C
Max Junction Temperature Range	+150	°C

Note1:Input pins are diode-clamped to the power-supply rails. Current limit input signals that can swing more than 0.5 V beyond the supply rails to 10 mA or less.

Note2:Short-circuit to ground, one amplifier per package.

Thermal Characteristics

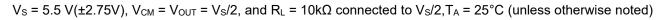
Symbol	Package	Ratings	Value	Unit
	SOP8		160	°C/W
	MSOP8	Thermal Characteristics, Thermal Resistance, Junction-to-Air	200	°C/W
	SOT23-5		215	°C/W
Reja	TSOT23-8		185	°C/W
	SC70-5		230	°C/W
	SOP14		107	°C/W
	TSSOP14		136	°C/W

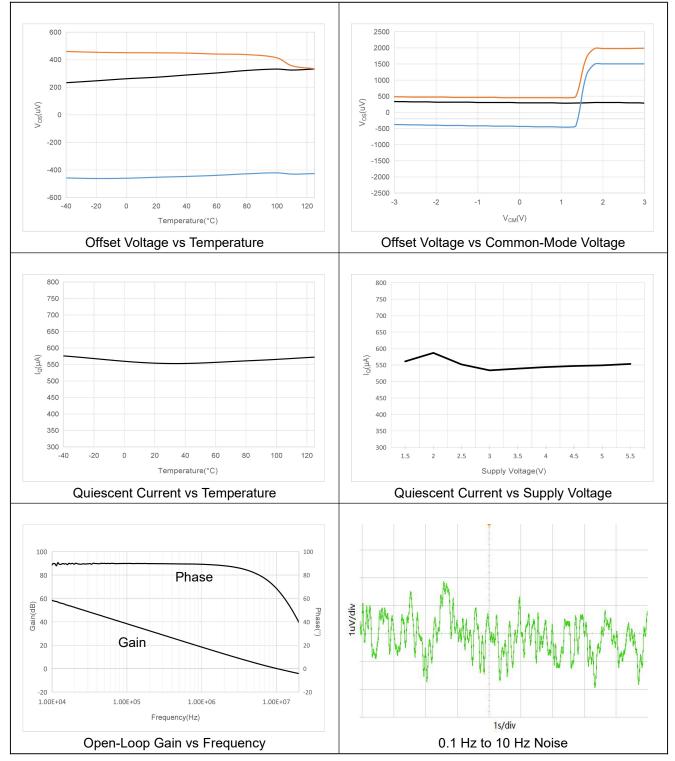
Recommended Operating Conditions

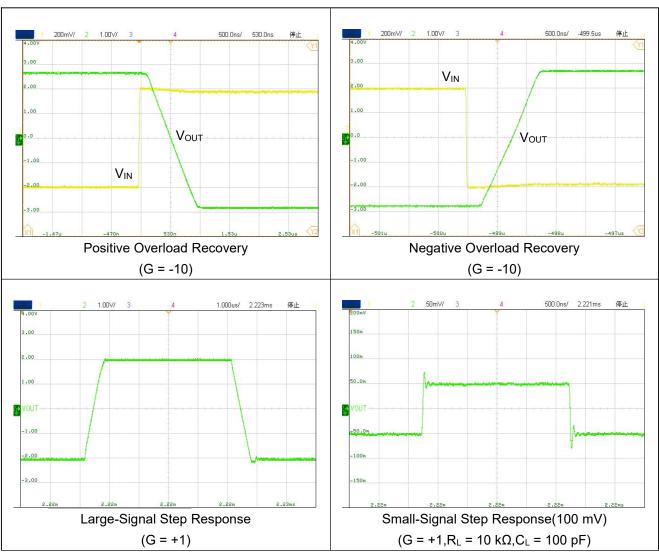
Parameter	MIN	МАХ	Unit
Supply Voltage (V _S)	1.8	5.0	V
Operating Temperature (T _A)	-40	125	°C

Electrical Characteristics

 $V_S = (V+) - (V-) = 1.8 V$ to 5.5 V (±0.9 V to ±2.75 V), $T_A = 25^{\circ}C$, $R_L = 10 k\Omega$ connected to $V_S/2$, and $V_{CM} = V_{OUT} = V_S/2$ (unless otherwise noted).


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
OFFSE	T VOLTAGE					
		V _S = 5 V		±0.3	±2	
Vos	Input offset voltage	V _S = 5 V, T _A = -40°C to 125°C			±2.5	mV
dV _{os} /dT	Vos vs temperature	$V_{\rm S}$ = 5 V, $T_{\rm A}$ = -40°C to 125°C		±0.53		µV/°C
PSRR	Power-supply rejection ratio	Vs = 1.8 to 5.5 V, V _{CM} = (V-)		±7	±80	μV/V
INPUT	OLTAGE RANGE					1
V _{CM}	Common-mode voltage range	VS = 1.8 V to 5.5 V	(V-)-0.1		(V+)+0.1	V
		V _S = 5.5 V,				
		(V-) - 0.1 V < V _{CM} < (V+) - 1.4 V, T _A = -40°C to 125°C	70	103		
		V _S = 5.5 V,				-
		VCM = -0.1 V to 5.6 V,	57	87		
	Common-mode rejection ratio	$T_A = -40^{\circ}C$ to $125^{\circ}C$				
CMRR		V _S = 1.8 V,				dB
		(V−) − 0.1 V < VCM < (V+) − 1.4 V,		88		
		$T_A = -40^{\circ}C$ to $125^{\circ}C$				
		V _S = 1.8 V,]
		VCM = -0.1 V to 1.9 V,		81		
		T _A = -40°C to 125°C				
INPUT I	BIAS CURRENT					
Ι _Β	Input bias current	V _S = 5 V		±1		pА
los	Input offset current			±1		pА
NOISE					•	
En	Input voltage noise (peak to peak)	f = 0.1 Hz to 10 Hz, V _S = 5 V		4.77		μV _{PP}
	Input voltage	$f = 1 \text{ kHz}, \text{ V}_{\text{S}} = 5 \text{ V}$		16		
en	noise density	$f = 10 \text{ kHz}, \text{ V}_{\text{S}} = 5 \text{ V}$		10		nV/√Hz
	Input current					
İn	noise density ⁽³⁾	<i>f</i> = 1 kHz, V _S = 5 V		23		fA/√Hz
INPUT	CAPACITANCE	1			1	1
CID	Differential ⁽³⁾			2		pF
CIC	Common-mode ⁽³⁾			4		pF


Electrical Characteristics (Continued)


Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
OPEN-L	OOP GAIN						
A _{OL}	Open-loop voltage gain	$V_{\rm S}$ = 1.8 V, R _L = 10 kΩ		400			
		$(V-) + 0.04 V < V_0 < (V+) - 0.04 V$		100		_	
		$V_{\rm S}$ = 5.5 V, R _L = 10 kΩ	404	130			
		(V-) + 0.1 V < V₀< (V+) - 0.1 V	104				
		$V_{\rm S}$ = 1.8 V, R _L = 2 kΩ		100		– dB	
		$(V-) + 0.06 V < V_0 < (V+) - 0.06 V$					
		$V_{\rm S}$ = 5.5 V, R _L = 2 k Ω		130			
		(V-) + 0.15 V < V ₀ < (V+) − 0.15 V					
FREQU	ENCY RESPONSE				1		
GBW	Gain-bandwidth product	V _S = 5 V, G =+1		10		MHz	
φ _m	Phase margin	V _S = 5 V, G =+1		55		0	
SR	Slew rate	V _S = 5 V, G =+1		6		V/µs	
	Settling time ⁽³⁾	To 0.1%, V _S = 5 V, 2V step,		0.5			
ts		G = +1, C _L = 100 pF		0.5			
		To 0.01%, V _S = 5 V, 2V step,	1			μs	
		G = +1, C∟ = 100 pF					
+	Overload	V _S = 5 V, V _{IN} × gain > V _S		0.2		μs	
t _{OR}	recovery time	$v_{\rm S} = 5 v$, $v_{\rm N} \times gam > v_{\rm S}$					
THD+N	Total harmonic	V_{S} = 5.5 V, V_{CM} = 2.5 V,		0.0008		%	
	distortion + noise	$V_0 = 1 V_{RMS}, G = +1, f = 1 \text{ kHz},$					
OUTPU	Т						
Vo	Voltage output swing	V_{S} = 5.5 V, R_{L} = 10 k Ω			20	mV	
	from supply rails	V_{S} = 5.5 V, R_{L} = 2 k Ω			60		
Isc	Short-circuit current	Vs = 5 V		±50		mA	
Zo	Open-loop	V _S = 5 V, <i>f</i> = 10MHz		100		Ω	
	output impedance ⁽³⁾	vs – 5 v, j – 1000112		100		32	
POWER	SUPPLY						
Vs	Specified		1.8 (±0.9)		5.5 (±2.75)	V	
	voltage range				5.5 (±2.75)	v	
	Quiescent current per amplifier	I ₀ = 0 mA, V _S = 5.5 V		550	750		
l _Q		I _O = 0 mA, V _S = 5.5 V,		80		μA	
		$T_{A} = -40^{\circ}C$ to $125^{\circ}C$			800		

Note3:Guaranteed by design.

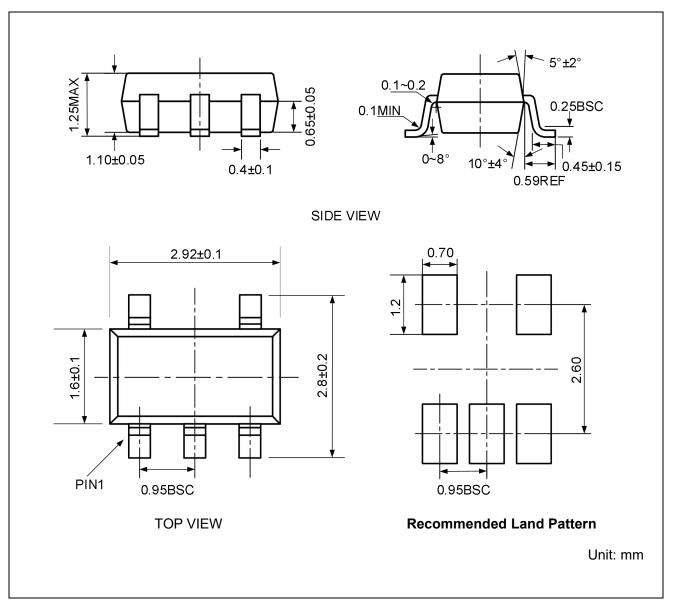
Typical Characteristics

Typical Characteristics (Continued)

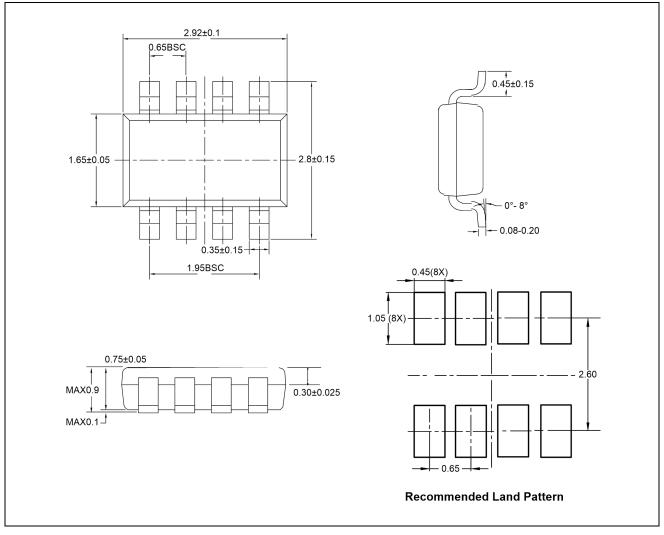
Application Notes

Layout Guidelines

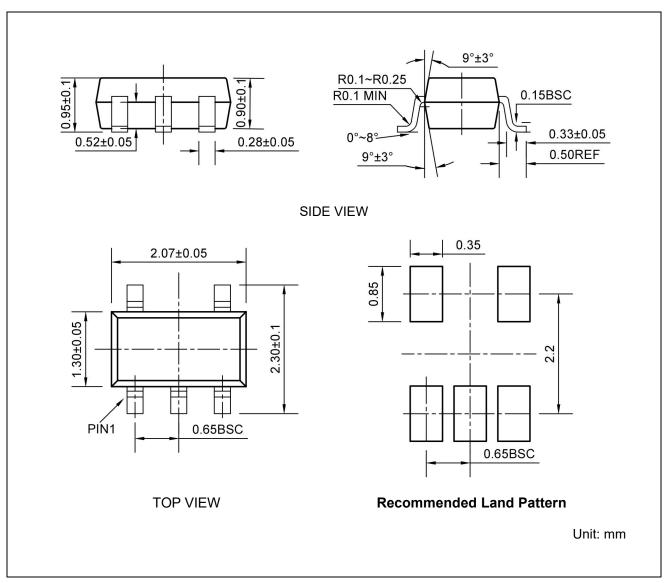
For best operational performance of the device, use good PCB layout practices, including:

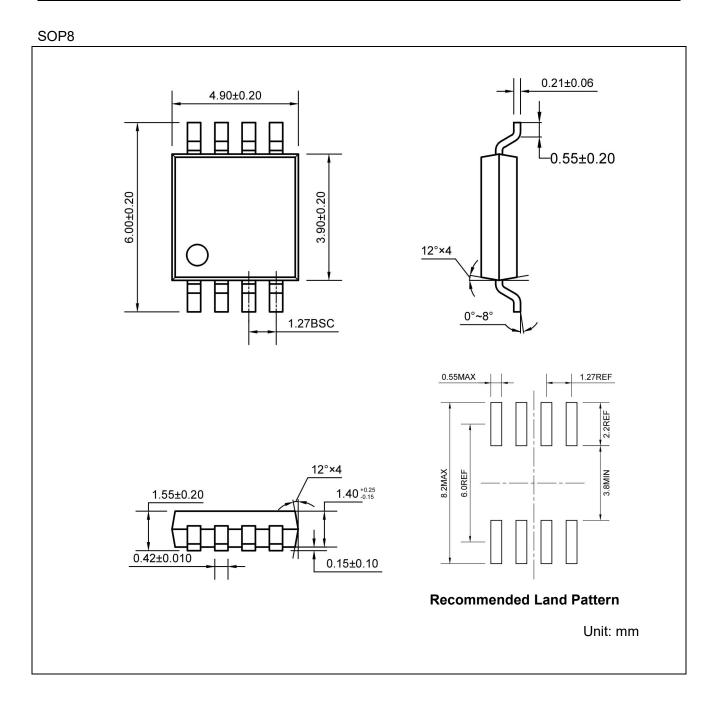

Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring.

To reduce parasitic coupling, run the input traces as far away from the supply lines and digital signal as possible.Low-ESR, 0.1 μ F ceramic bypass capacitors must be connected between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable to single supply applications.

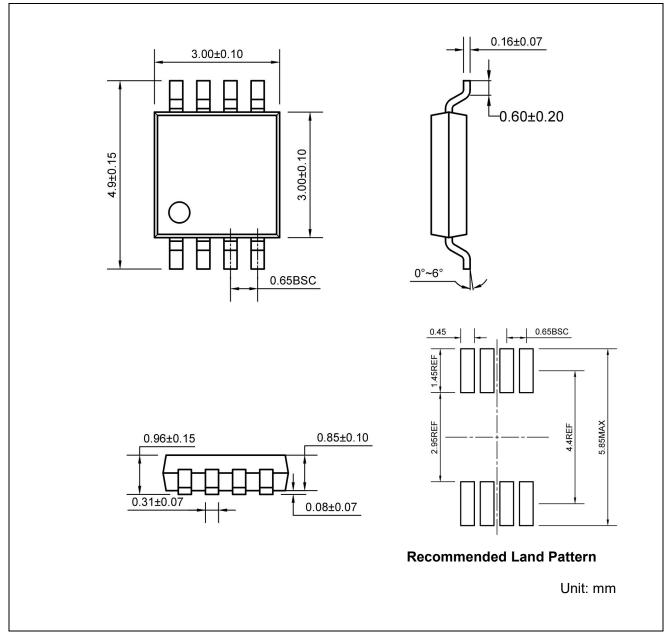

Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

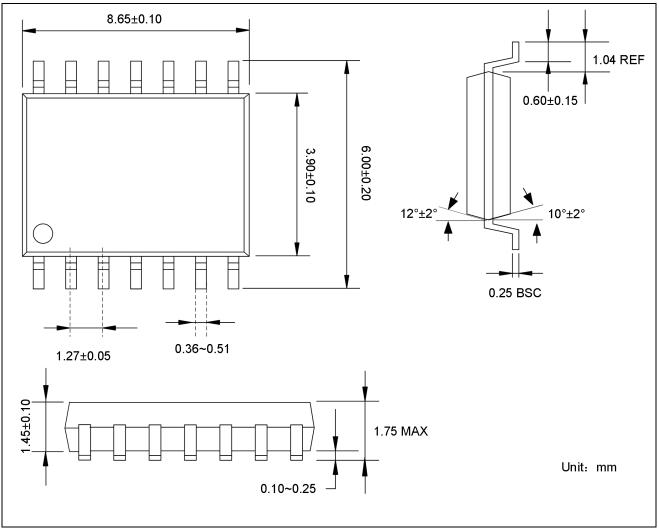
Package Dimension

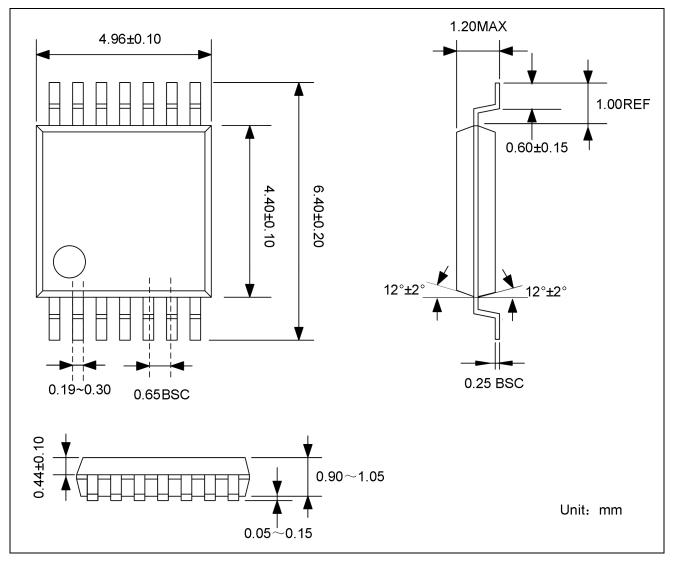

SOT23-5



TSOT23-8






MSOP8

TSSOP14

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0.0	2023-04-21	Preliminary Version	Huyt	Wanggp	Liujy
1.0	2023-08-31	Original Version	Huyt	Chenh	Liujy
1.1	2023-09-28	Naming updates	Huyt	Wanggp	Liujy
1.2	2025-4-2	Add TSOT23-8	Huyt	Wanggp	Liujy
1.3	2025-4-11	Update MSL Grade	Huyt	Chenh	Liujy
1.4	2025-4-17	Update Typical Characteristics	Huyt	Tangyx	Liujy