

44V, 15V/µs, 3.5MHz, Operational Amplifier

General Description

The ET85932 is a newest high supply voltage amplifier with low offset, low power and stable high frequency response. They incorporate ETEK's proprietary and patented design techniques to achieve very good AC performance with 3.5MHz bandwidth, 15V/ μ s slew rate and low distortion while drawing only typical 700 μ A of quiescent current per amplifier.

The input common-mode voltage range extends to -Vs, and the outputs swing rail-to-rail. The ET85932 can be used as plug-in replacements for many commercially available op-amps to reduce power and improve input/output range and performance.

The combination of features makes the ET85932 ideal choices for industrial control, motor control and portable audio amplification, sound ports, and other consumer audio.

ET85932 is specified for the extended industrial/automotive temperature range (-40°C to +125°C). It is available in SOP8/MSOP8/SSOP8 packages.

Features

- Supply Voltage: 3V to 44V
- Low Supply Current: Maximum 1000µA per channel
- Differential Input Voltage Range to Supply Rail, can Work as Comparator
- Input Rail to -V_s, Rail to Rail Output
- Fast Response: 3.5 MHz Bandwidth, 15V/µs Slew Rate, 100ns Overload Recovery
- Low Offset Voltage:
 - ±2mV Maximum at 25°C
 - ±2.5mV Maximum at -40°C to 85°C
 - ±3mV Maximum at -40°C to 125°C
- Very Low THD+N: 0.0005% at Gain = 1, 1kHz
- 2KV HBM, 1KV CDM, 150mA Latch Up
- -40°C to 125°C Operation Temperature Range

Applications

- Sensor Interface
- Motor Control
- Industrial Control
- Audio

Device information

Part No.	Package	Tape / Reel
ET85932M	SOP8	Tape and Reel
ET85932U	MSOP8	Tape and Reel
ET85932S	SSOP8	Tape and Reel

Pin Configuration

Pin Function

Pin Number	Symbol	Descriptions
1	OUTA	Output
2	-INA	Inverting input
3	+INA	Non-inverting input
4	-Vs	Negative supply
5	+INB	Non-inverting input
6	-INB	Inverting input
7	OUTB	Output
8	+V _S	Positive supply

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Parameter	Rating	Unit
Supply Voltage (+Vs) - (-Vs)	44	V
Input Voltage	(-Vs)-0.3V to (+Vs)+0.3	V
Differential Input Voltage	(+V _S) - (-V _S)	V
Input Current: +IN, -IN ⁽¹⁾	±10	mA
Output Short-Circuit Duration ⁽²⁾	Infinite	
Maximum Junction Temperature	150	°C
Operating Temperature Range	-40 to 125	°C
Storage Temperature Range	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	260	°C

Note1: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 300mV beyond the power supply, the input current should be limited to less than 10mA. **Note2**: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.

ESD Rating

Symbol	Parameter Condition		Minimum Level	Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001	2	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002	1	kV

Recommended Operating Conditions

Parameter	MIN	МАХ	Unit
Supply Voltage (V _S)	3	44	V
Operating Temperature (T _A)	-40	125	°C

Electrical Characteristics

All test condition is V_S = 30V, T_A = 25°C, R_L = 10k Ω to $V_S/2$, unless otherwise noted.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Power	Supply						
Vs	Supply Voltage Range			3		44	V
		V _S = 30V			700 1000		
	Quiescent Current per	V _S = 30V, T _A = -40°C to 125°C				1200	μA
lq	Amplifier	V _S = 5V			600	850	
		$V_{\rm S}$ = 5V, $T_{\rm A}$ = -4	0°C to 125°C			1000	
	Power Supply	V _S = 3V t	to 36V	95	120		
PSRR	Rejection Ratio	Vs = 3V t T _A = -40°C	*	90			dB
Input C	haracteristics					1 1	
-				-2	0.1	2	
		$V_{\rm S} = 30V,$	-40°C to 85°C	-2.5		2.5	
		$V_{CM} = 0V$ to 28V	-40°C to 125°C	-3		3	
Vos	Input offset voltage	V _S = 30V,		-3		3	mV
		V _{CM} = 28.5V	-40°C to 125°C	-4		4	
		V _S = 5V,		-2	0.1	2	
		V _{CM} = 2.5V	-40°C to 125°C	-3		3	
dV _{os} /dT	V _{os} vs temperature	T _A = -40°C to 125°C			2		µV/°C
					25		•
Ι _Β	Input Bias Current	T _A = -40°C	to 85°C		80		pА
		$T_A = -40^{\circ}C$	to 125°C		1000		
los	Input Offset Current				25		pА
		Vs = 36V,			10		
lin	Different Input Current	V _{ID} = 36V	-40°C to 125°C		100		nA
0	Input Capacitance Commo		al Mode		5		pF
CIN			Mode		2.5		
	Open-loop Voltage			105	105 120		
A _{OL}	Gain	T _A = -40°C	to 85°C	100			dB
Vcm	Common-mode Input voltage range	No phase reversal, rail-to-rail input		(-Vs)		(+Vs)-1.5	V
		V _{CM} = 0V	to 28V	105	130		
CMRR	Common-mode rejection ratio	$V_{CM} = 0V \text{ to } 28V,$ $T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$		100			dB

4

Electrical Characteristics (Continued)

Symbol	Parameter	Conditi	ons	Min	Тур	Max	Unit	
Output	Characteristics				1			
		$R_{LOAD} = 10k\Omega$ to			200	300	mV	
Vон	Output Swing from Positive Rail	Vs/2	-40°C to 125°C			450	mV	
					1.1	1.4	V	
		$R_{LOAD} = 2k\Omega \text{ to } V_s/2$	-40°C to 125°C			2	V	
		$R_{LOAD} = 10k\Omega$ to			200	300	mV	
	Output Swing from	Vs/2	-40°C to 125°C			450	mV	
Vol	Negative Rail				0.8	1	V	
		$R_{LOAD} = 2k\Omega$ to Vs/2	-40°C to 125°C			1.6	V	
				25	32			
lsc	Output Short-Circuit	T _A = -40°C	to 85°C	20			mA	
	Current	T _A = -40°C to 125°C		15			1	
AC Spe	cifications				1			
GBP	Gain-Bandwidth Product				3.5		MHz	
		G = 1, 10V step			15			
0.0	Slew Rate	Open Loop		9	15		- V/µs	
SR			-40°C to 85°C	7				
			-40°C to 125°C	6				
t _{OR}	Overload Recovery				100		ns	
	Settling Time, 0.1% ⁽³⁾	G = -1, 10	V step		0.8			
ts	Settling Time, 0.01% ⁽³⁾				1		μs	
PM	Phase Margin	Vs = 36V, R∟=10	K, C∟=100pF		60		٥	
GM	Gain Margin ⁽³⁾	V _S = 36V, R _L =10K, C _L =100pF			15		dB	
Noise F	Performance							
E _N	Input Voltage Noise	f = 0.1Hz to 10Hz			1.7		µV _{RMS}	
en	Input Voltage Noise Density	f = 1kHz			30		nV/√Hz	
İN	Input Current Noise ⁽³⁾	f = 1kHz			2		fA/√Hz	
THD+N	Total Harmonic Distortion and Noise	f = 1kHz, G =1, R _L = 10kΩ, V _{OUT} = 6V _{RMS}			0.0005		%	

Note3: Guaranteed by design.

Package Dimension

ET85932

ET85932

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0.0	2024-7-5	Original Version	Huyt	Chenh	Liujy