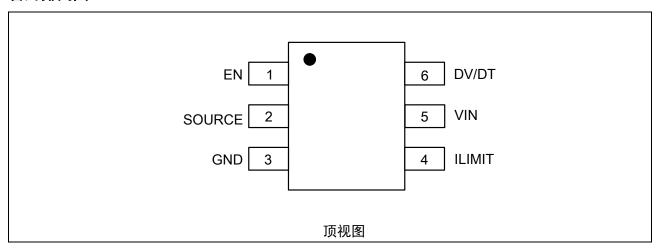


3V 至 22V、50mA 至 3A 可编程限流开关

概述

ET20135 是一款 N 沟道 MOSFET 电源限流开关。它可以保护输出电路免受输入瞬变的影响,也可以保护输入免受输出短路和瞬变的影响。ET20135 在启动期间的浪涌电流受输出斜率的限制,而斜率则通过 DV/DT 引脚控制。限流值由 ILIMIT 引脚和 GND 之间连接的外部电阻控制;当 ILIMIT 引脚悬空时,限流值固定为 300mA。

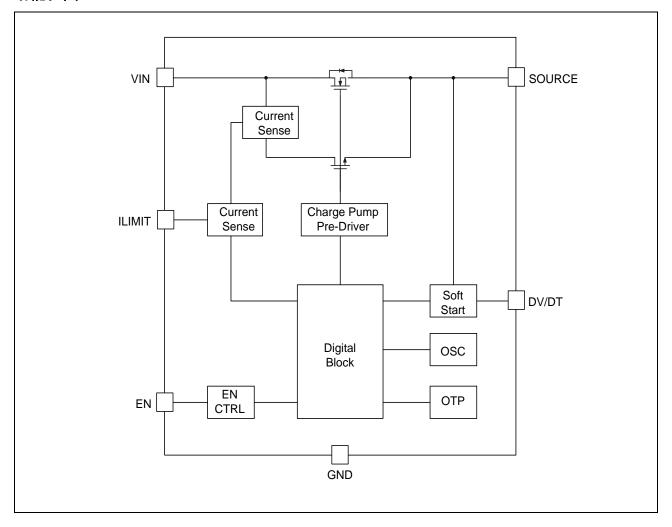
ET20135 采用 TSOT23-6 封装。


功能特点

- 3.0V 至 22V 的宽工作输入电压 (V_{IN}) 范围
- 具有可调限流值或ILIMIT 引脚悬空时的固定限流值
- 通过 DV/DT 引脚可编程软启动时间 (tss)
- 集成 57mΩ 功率 MOSFET
- 快速响应短路保护
- 具有打嗝模式的过流保护 (OCP)
- 过温关断保护和自动重启功能
- ESD 保护: Human Body Model(JESD22-A114,All pins) ±2KV
- 采用TSOT23-6封装

应用

- SSD硬盘
- PC卡
- 无线调制解调器数据卡
- USB电源分配
- USB保护
- USB 3.1电源传输
- 服务器PC


管脚排列图

管脚说明

管脚	名称	功能描述		
1	EN	使能引脚。强制 EN 高以启用 IC。悬空或拉到 GND 以禁用 IC。EN 通过 300kΩ		
		电阻上拉至 VIN 实现快速启动。		
2	SOURCE	内部电源 N 沟道 MOSFET 和输出端。		
3	GND	接地引脚。		
4	ILIMIT	限流编程引脚。通过电阻连接到 GND 来编程限流。ILIMIT 引脚悬空,限流值固		
		定为 300mA		
5	VIN	电源输入引脚。必须使用 1uF 或更大的陶瓷电容器与 GND 引脚连接去耦。使用		
		宽 PCB 走线连接至 VIN。		
6	DV/DT	软启动编程引脚。通过电容连接到 GND,来设置 DV/DT 的转换速率。		

功能框图

功能描述

ET20135 是一款集成电源开关,具有低 R_{DS_ON} N 沟道 MOSFET、可编程软启动时间、可编程限流功能。当 ET20135 开启时,它可以向负载提供高达 3A 的连续电流。

电源注意事项

建议在 V_{IN}和 GND 之间靠近芯片放置一个 10uF MLCC 电容器。当输出负载较重时,建议在输出引脚上放置高值电解电容器。这种预防措施可以有效的减少输入振铃的电源瞬态,并最大限度地减少了输入电压下降。此外,使用 10uF MLCC 电容器,当输出短路时可以提高芯片对短路瞬态的抗扰性。

电流限制 (ILIMIT)

ET20135 提供恒定时间的电流限制,可以通过外部的电阻进行配置。ILIMIT 可已通过方程式 1 来计算:

$$I_{\text{LIMIT}} = \frac{0.58 \, (\text{V})}{\text{R}_{\text{LIMIT}} \, (\Omega)} \times 1940 \tag{1}$$

如果电流限制的时间持续超过 1.7ms(DV/DT 悬空), ET20135 将进入打嗝模式, 关闭时间为 700ms。

ET20135 允许 ILIMIT 在正常工作中悬空,内部有固定电流设置阈值,限流值为 300mA。电流限制响应时间为 40us⁽¹⁾。

当 ILIMIT 短接至 GND 时,芯片电流限制功能将被禁用,但二次电流限制仍然有效。二次电流限制设置为 8A。 当二次电流限制被触发时,功率 MOSFET 将立即关闭。

短路保护 (SCP)

如果负载电流由于短路事件而迅速增加,则在控制回路响应之前,电流可能会超过电流限制阈值。如果电流达到 8A 次级电流限制,则会快速关断功率 MOSFET。这限制了通过开关的峰值电流,并防止输入电压下降太多。总短路响应时间约为 3us⁽¹⁾。MOSFET 关断后,会重新启动,如果重启时短路仍然存在,ET20135 会调节 MOSFET,将电流保持在正常限流阈值的水平,并持续 1.7ms,MOSFET 会再次关断,进入打嗝模式,关断时间为 700ms。

为了避免在短路保护(SCP)进入期间因输入电压尖峰过大而损坏 IC,建议在 VIN 超过 15V 时使用最小 22μF 的输入电容器。如果输入浪涌电压高于 26V,会有损坏 IC 的风险。为了防止在高输入电压短路条件下损坏安全工作区(SOA),当功率 MOSFET 的电压(VDS)升高到典型的 11V 以上,结温超过 100° C 时,IC 电流限制会向后折叠。

软启动 (SS)

软启动时间可以通过从 DV/DT 连接到 GND 的外部电容器来设置。软启动时间可以用方程式 2 计算:

$$t_{ss}(ms) = \frac{V_{IN}(V)}{DV/DT(V/ms)}$$
 (2)

DV/DT 转换速率由外部 DVDT 电容器决定。

ET20135

热保护 (OTP)

当存在长时间严重过载或短路故障时, 热保护可以防止 IC 损坏。ET20135 实现了热传感, 以监测功率 MOSFET 的工作结温。在过电流或短路条件下, 结温会因过度功耗而升高。

当芯片温度因过电流条件而升至约 175°C,内部热感测电路就会关闭电源开关,从而防止电源开关损坏。当温度降至其较低阈值(通常为 140°C)以下时,芯片在 700ms 延迟后再次启用。

注 1: 测试条件为 V_{IN} =12V, I_{LIMIT} =0.3A, I_{A} =25°C, I_{COUT} =0uF。电流限制响应时间是 I_{OUT} 首次超过 I_{LIMIT} 和回落到 I_{LIMIT} 之间的时间差。短路响应时间是 I_{OUT} 超过 8A 和回落到 I_{OUT} 超过 8D 之间的时间差。

极限参数

符号		最小值	最大值	单位	
VIN, VSOURCE	VIN, S	-0.3	26	V	
V _{IO}	ILIMIT, E	-0.3	5.5	V	
P _D	功耗		1.5	W	
TJ		-40	+150	°C	
Tstg		-65	+150	°C	
TA	I	-40	+85	°C	
T _{SOLD}	铅焊接		+260	°C	
	静电放电能力	Human Body Mode,	2.0		KV
V _{ESD}		ESDA/JEDEC JS-001-2017	2.0		
VESD		Charged Device Mode,	1.5		IZ\/
		ESDA/JEDEC JS-002-2018			KV

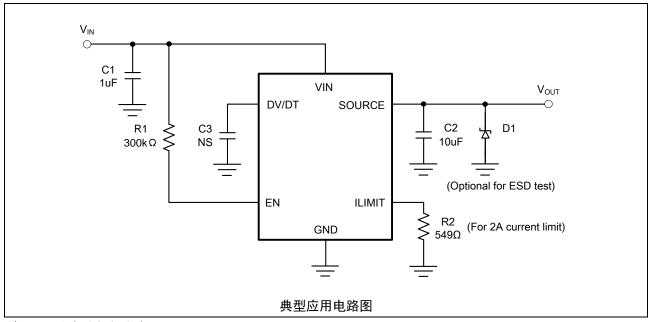
au2:最大允许功耗是指记录到最大允许结温。 $P_{D (MAX)} = (TJMAX) - T)/\theta$ 。

电参数

除非特别说明,测试条件为 V_{IN}=12V, R_{LIMIT}=NS, C_{OUT}=10uF, T_A= -40°C to 85°C, 典型值在 T_A=25°C下测试。

符号	参数	测试条件	最小值	典型值	最大值	单位			
电源电压、电流									
VIN	输入电压		3.0		22	V			
ΙQ	V _{IN} 静态电流	使能为高电平		550		μA			
ls	V _{IN} 关断电流	使能为低电平		17		uA			
功率 MOSF	功率 MOSFET								
Ron	开关导通阻抗	I _{OUT} =1A		57		mΩ			
Ton	开关延迟时间	DV/DT 悬空 Vout上升到 10% Vin		2.5		ms			
loff	开关关断漏电流	V _{IN} =12V,使能为低电平		0.1	1	uA			
欠压保护									
$V_{\text{UVLO}_{R}}$	欠电压锁定阈值	升高输入电压	2.55	2.7	2.85	V			
Vuvlo_HYS	UVLO 迟滞			200		mV			
DV/DT									
DV/DT	DV/DT 转换速率	DV/DT 悬空	1.3	2	2.7	V/ms			
I _{DV/DT}	DV/DT 电流 ⁽³⁾	$V_{DV/DT} = 0.5V$	4.5	6.5	8.5	uA			
电流限制									
		ILIMIT 悬空, T _A =25°C	0.28	0.3	0.32	Α			
	正常工作状态的	R _{LIMIT} = 549Ω, T _A =25°C	1.85	2.0	2.15	Α			
ILIMIT_NO	电流限制 ⁽⁴⁾	R _{LIMIT} = 1.5kΩ, T _A =25°C	0.7	0.75	0.8	Α			
		R _{LIMIT} = 5.6kΩ, T _A =25°C	0.185	0.2	0.215	Α			
使能 (EN)									
V _{EN_R}	使能上升阈值		1.86	2	2.16	V			
V _{EN_HYS}	使能迟滞			350		mV			
R _{EN}	使能下拉电阻		1.4	2.2	3.0	ΜΩ			
Output Disc	harge								
R _{DIS}	放电电阻			540		Ω			
Over-Tempe	erature Protection								
T _{SD}	热关断			175		°C			
T _{SD_HYS}	热关断迟滞			35		°C			

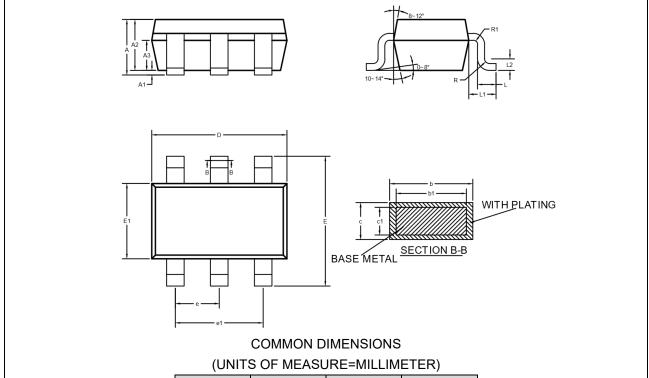
注3: 对于具有外部 DV/DT 电容的情况,Vsource 的转换速率可以用以下方程式 3 计算:


$$DV/DT(V/ms) = \frac{6.5(uA) \times K1}{C_{DV/DT}(nF)}$$
(3)

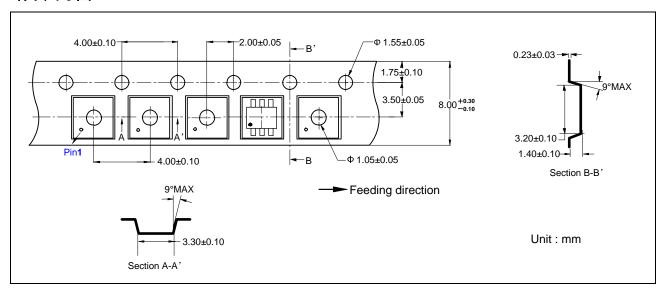
• K1=30

注4: 电流限制可以用以下方程式 4 近似表示:

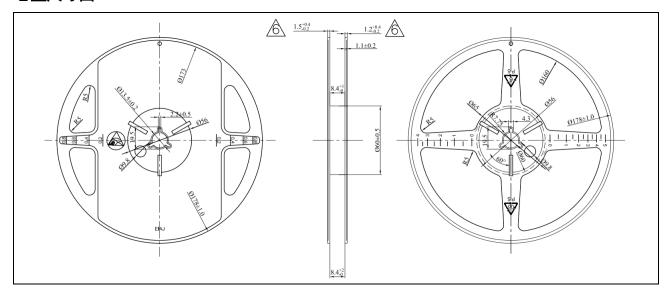
$$I_{\text{LIMIT}} = \frac{0.58 \, (\text{V})}{\text{R}_{\text{LIMIT}} \, (\Omega)} \times 1940 \tag{4}$$


应用线路图

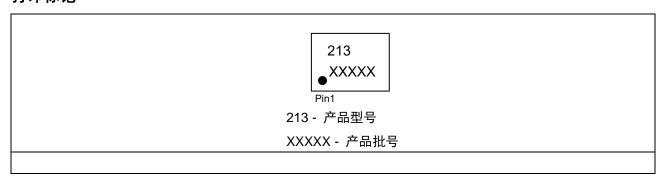
注5:: 此电路仅供参考。


封装尺寸图

TSOT23-6



SYMBOL	MIN	NOM	MAX	
Α	0.780	0.880	0.980	
A1	0.000	0.050	0.100	
A2	0.780	0.830	0.880	
A3	0.350	0.400	0.450	
b	0.320	0.420	0.520	
b1	0.350	0.400	0.450	
С	0.080	_	0.220	
c1	0.097	0.127	0.157	
D	2.800 2.900		3.000	
Е	2.700	2.800	2.900	
E1	1.500	1.600	1.700	
е	0.950BASE			
e1	1.900BASE			
L	0.300	00 0.450 0.600		
L1	0.600REF			
L2	0.250BSC			
R	0.080	— 0.200		
R1	R1 0.080		0.200	


编带尺寸图

卷盘尺寸图

打印标记

ET20135

修订历史和检查表

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2025-05-15	V1.0	Caojc	Liuks	Liujy