

16-bit Constant Current LED Sink Driver

General Description

ET6024S is designed for LED displays. ET6024S contains a serial buffer and data latches which convert serial input data into parallel output format. At ET6024S output stage, sixteen regulated current ports are designed to provide uniform and constant current sinks for driving LEDs within a large range of V_F variations.

ET6024S provides users with great flexibility and device performance while using ET6024S in their system design for LED display applications, e.g. LED panels. Users may adjust the output current from 3mA to 45mA through an external resistor, R_{EXT}, which gives users flexibility in controlling the light intensity of LEDs. ET6024S guarantees to endure maximum 20V at the output port. The high clock frequency, 25MHz, also satisfies the system requirements of high volume data transmission.

Features

- 16 constant-current output channels
- Constant output current invariant to load voltage change
- Excellent output current accuracy:
- Current accuracy

Current A	Accuracy	Conditions
Between Channels	Between ICs	Conditions
Z120/	Z160/	I _{OUT} =3mA~30mA@V _{DS} =0.8V,V _{DD} =3.3V
<±3%	<±6%	$I_{OUT} = 3mA \sim 45mA@V_{DS} = 0.8V, V_{DD} = 5.0V$

- Output current adjusted through an external resistor
- Constant output current range: 3~45mA
- Fast response of output current,
- OE (min) is 40ns (V_{DD}= 3.3V)
- 25MHz clock frequency
- Schmitt trigger input
- Supply voltage: 3.3V~5.5V
- Part No. and package:

Part No.	Package	Size
ET6024S	SSOP24-3	6mm x 13mm

Pin Assignments

Pin. Function

No.	Pin Name	Function
1	GND	Ground terminal for control logic and current sink.
2	SDI	Serial-data input to the shift register.
3	CLK	Clock input terminal for data shift on rising edge.
		Data strobe input terminal.
4	LE	Serial data is transferred to the output latch when LE is high.
		The data is latched when LE goes low.
5∼20	OUT0 ∼ OUT15	Constant current output terminals.
		Output enable terminal.
21	ŌĒ	When OE (active) low, the output drivers are enabled;
		when OE high, all output drivers are turned OFF (blanked).
22	SDO	Serial-data output to the following SDI of next driver IC.
23	R-EXT	Input terminal used to connect an external resistor for setting up
23	R-EXT	output current for all output channels.
24	VDD	5V supply voltage terminal

Block Diagram

Functional Description

Constant Current

In LED display application, ET6024S provides nearly no variations in current from channel to channel and from IC to IC. This can be achieved by:

- 1) The maximum current variation between channels is less than $\pm 3\%$ (typical), and that between ICs is less than $\pm 6\%$ (typical).
- 2) In addition, the current characteristic of output stage is flat and users can refer to the figure as shown below. The output current can be kept constant regardless of the variations of LED forward voltages (Vf). This performs as a perfection of load regulation.

Adjusting Output Current

The output current of each channel (I_{OUT}) is set by an external resistor, R_{EXT} . The relationship between lout and R_{EXT} is shown in the following figure.

Resistance of the external resistor, $R_{EXT}(K\Omega)$

Also, the output current can be calculated from the equation:

$V_{R-EXT} = 1.24V$; $I_{OUT} = (V_{R-EXT} / R_{EXT}) \times 15$

Where R_{EXT} is the resistance of the external resistor connected to R-EXT terminal and V_{R-EXT} is the voltage of R-EXT terminal. The magnitude of current (as a function of R_{EXT}) is around 25mA at 744 Ω and 10mA at 1860 Ω .

Package Power Dissipation (PD)

The maximum allowable package power dissipation is determined as P_D (max)=(T_J-T_A)/ $R_{\theta(JA)}$. When 16 output channels are turned on simultaneously, the actual package power dissipation is P_D (act)=($I_{DD} \times V_{DD}$)+($I_{OUT} \times Duty \times V_{DS} \times 16$).

Therefore, to keep P_D (act) $\leq P_D$ (max), the allowable maximum output current as a function of duty cycle is: $I_{OUT} = \{[(T_J - T_A) / R_{\theta(JA)}] - (I_{DD} \times V_{DD})\} / V_{DS} / Duty / 16,$

where $T_J = 150$ °C.

Condition: I _{OUT} = 50mA,16 output Channels						
Device Package Type	R _{θ(JA)} (°C/W)					
SSOP24-3	88					

Load Supply Voltage (V_{LED})

ET6024S are designed to operate with V_{DS} ranging from 0.4V to 1.0V considering the package power dissipating limits. V_{DS} may be higher enough to make $P_D(act) > P_D(max)$; when $V_{LED} = 5V$ and $V_{DS} = V_{LED} - Vf$, in which V_{LED} is the load supply voltage. In this case, it is recommended to use the lowest possible supply voltage or to set an external voltage reducer, V_{DROP} . A voltage reducer lets $V_{DS} = (V_{LED} - Vf) - V_{DROP}$.

Resistors or Zener diode can be used in the applications as shown in the following figures.

Equivalent Circuits of Inputs and Outputs

Timing Diagram

Truth Table

CLK	LE	OE	SDI	OUT0 OUT7 OUT15	SDO
£	Н	L	D _n	$\overline{D_n}\;\overline{D_{n-7}}\;\overline{D_{n-15}}$	D _{n-15}
	L	L	D _{n+1}	No Change	D _{n-14}
£	Н	L	D _{n+2}	$\overline{D_{n+2}}$ $\overline{D_{n-5}}$ $\overline{D_{n-13}}$	D _{n-13}
7_	×	L	D _{n+3}	$\overline{D_{n+2}}$ $\overline{D_{n-5}}$ $\overline{D_{n-13}}$	D _{n-13}
T_	Х	Н	D _{n+3}	Off	D _{n-13}

Absolute Maximum Ratings

Characteristic	Symbol	Rating	Unit
Supply Voltage	V_{DD}	0∼7.0	V
Input Voltage	V _{IN}	-0.4~V _{DD} +0.4	V
Output Current	Іоит	+60	mA
Output Voltage	V _{DS}	-0.5~20.0	V
Clock Frequency	F _{CLK}	25	MHz
GND Terminal Current	I _{GND}	1000	mA
Power Dissipation	P _D	1.4	W
Operating Temperature	TA	-40∼+85	°C
Storage Temperature	T _{STG}	- 65∼+150	°C

Electrical Characteristics (V_{DD} =5V, T_A =25 $^{\circ}$ C)

Charac	teristic	Symbol	Cor	ndition	Min.	Тур.	Max.	Unit
Supply	Voltage	V_{DD}		-	4.5	5.0	5.5	V
Output	Voltage	V_{DS}	OUT0 ∼ OUT15		-	-	20.0	V
		Іоит	DC Te	st Circuit	3	-	45	mA
Output	Current	Іон	S	SDO	-	-	-1.0	mA
		I _{OL}	S	SDO	-	-	1.0	mA
Input	"H" level	V _{IH}	T _A =-40∼85°C		0.7V _{DD}	-	V_{DD}	V
Voltage	"L" level	VIL	T _A =-4	0∼85°C	GND	-	0.3V _{DD}	V
	tput Current	Іон	Vон	=20.0V	-	-	0.5	μΑ
Output	SDO	Vol	I _{OL} =-	+1.0mA	-	-	0.4	V
Voltage	300	V _{OH}	I _{OH} =	-1.0mA	4.6	-	-	V
Output 0	Current 1	I _{OUT1}	V _{DS} =1.0V	R _{EXT} =1240Ω	-	15	-	mA
	nt Skew channels)	dl _{OUT1}	I _{OL} =15mA V _{DS} =1.0V	R _{EXT} =1240Ω	-	±1.5	±3	%
Output 0	Current 2	Іоит2	V _{DS} =1.0V	R _{EXT} =620Ω	-	30	-	mA
Curren	nt Skew	dl _{OUT2}	I _{OL} =30mA	R _{EXT} =620Ω	-	±1.5	±3	%

(between c	hannels)		V _{DS} =1.0V					
Current (betwee		dl _{ОUТ3}	I_{OL} =30mA V_{DS} =1.0V R_{EXT} =620 Ω			±3	±6	%
Output Cu								
Output V Regula	ŭ	%/dV _{DS}	V _{DS} within 1.0V to 3.0V		-	±0.1	-	%/V
Output Cu								
Supply V Regula	•	%/dV _{DD}	V _{DD} within 4.5V to 5.5V		-	±1	-	%/V
Pull-up R	esistor	R _{IN} (up)		OE	250	500	800	ΚΩ
Pull-down	Resistor	R _{IN} (down)	LE		250	500	800	ΚΩ
	"OFF"	I _{DD} (off)1		nterminal, OUT15 =Off	-	2.5	5	
Supply	OFF	I _{DD} (off)2	$R_{EXT} = 1240\Omega, \overline{O}$	$\overline{UT0}\sim\overline{OUT15}$ =Off	-	4.5	7.0	- Λ
Current	Current		$R_{EXT}=620\Omega$, O	$\overline{\text{JT0}}\sim\overline{\text{OUT15}}$ =Off	-	6	9.0	mA
	"ON"	I _{DD} (on)1	R _{EXT} =1240Ω, O	$\overline{UT0}\sim\overline{OUT15}$ =On	-	5.2	8.5	
	ON	I _{DD} (on)2	$R_{EXT}=620\Omega$, \overline{O}	$\overline{\text{JT0}}\sim\overline{\text{OUT15}}$ =On		6.5	9.5	

Electrical Characteristics (V_{DD}=3.3V, T_A=25°C)

Charac	cteristic	Symbol	Coi	ndition	Min.	Тур.	Max.	Unit
Supply	Voltage	V_{DD}		-	3.0	3.3	4.5	V
Output	Voltage	V _{DS}	OUT0	\sim $ extstyle extstyl$	-	-	20.0	V
	I		DC Te	est Circuit	3	ı	30	mA
Output	Current	Іон	·	SDO	-	ı	-1.0	mA
		loL		SDO	-	ı	1.0	mA
Input	"H" level	V_{IH}	T _A =-4	-0∼85°C	$0.7V_{DD}$	1	V_{DD}	V
Voltage	"L" level	V_{IL}	T _A =-4	-0∼85°C	GND	ı	$0.3V_{DD}$	V
•	Output Leakage Current Output Leakage Voh = 20.0V		1	-	0.5	μA		
Output	SDO	V_{OL}	I _{OL} =	+1.0mA	-	-	0.4	V
Voltage	300	Vон	Іон =	1.0mA	2.9	-	-	V
Output (Current 1	I _{OUT1}	V _{DS} =1.0V	R _{EXT} =1860Ω	-	10	-	mA
	nt Skew channels)	dl _{OUT1}	I_{OL} =10mA V_{DS} =1.0V	R _{EXT} =1860Ω	-	±1.5	±3	%
Output (Current 2	I _{OUT2}	V _{DS} =1.0V	R _{EXT} =744Ω	-	30	-	mA
	nt Skew channels)	dl _{OUT2}	I _{OL} =25mA V _{DS} =1.0V	R _{EXT} =744Ω	-	±1.5	±3	%
_	nt Skew en ICs)	dl _{ОUТ3}	I _{OL} =25mA V _{DS} =1.0V	R _{EXT} =744Ω		±3	±6	%
1	Current vs. :Voltage	%/dV _{DS}	V _{DS} within	1.0V to 3.0V	-	±0.1	-	%/V

Regula	ation						
Output Current vs.							
Supply Voltage		%/dV _{DD}	V _{DD} within 3.0V to 3.6V	-	±1	-	%/V
Regulation							
Pull-up Resistor R _{IN} (up)		R _{IN} (up)	ŌĒ	250	500	800	ΚΩ
Pull-down	Pull-down Resistor F		LE	250	500	800	ΚΩ
		I _{DD} (off)1	R _{EXT} = Unterminal,		1.8	5.0	
	"OFF"	ו (טוו) טטו	$\overline{ extsf{OUT0}}\sim\overline{ extsf{OUT15}}$ =Off	-	1.0	5.0	
Supply	OFF	I _{DD} (off)2	R_{EXT} =1860 Ω , $\overline{OUT0}\sim\overline{OUT15}$ =Off	-	4.1	7.0	mA
Current		I _{DD} (off)3	R_{EXT} =744 Ω , $\overline{OUT0}$ \sim $\overline{OUT15}$ =Off	-	5.2	8.5	IIIA
	"ON"	I _{DD} (on)1	R _{EXT} =1860Ω, $\overline{\text{OUT0}} \sim \overline{\text{OUT15}}$ =On	-	4.5	7.0	
	ON	I _{DD} (on)2	R_{EXT} =744 Ω , $\overline{OUT0}\sim\overline{OUT15}$ =On		5.4	8.5	

Switching Characteristics (V_{DD} =5V, T_A =25 $^{\circ}$ C)

Character	ristic	Symbol	Condition	Min.	Тур.	Max.	Unit
	CLK- OUTn	t _{PLH1}		-	80	100	ns
Propagation Delay	LE - OUTn	t _{PLH2}		-	80	100	ns
Time ("L" to "H")	OE - OUTn	t _{PLH3}	\/ 5.0\/	-	115	135	ns
	CLK-SDO	t _{PLH}	$V_{DD} = 5.0V$	-	20	40	ns
Propagation Delay LE - OUTn	CLK- OUTn	t _{PHL1}	V _{DS} = 1.0V	-	80	100	ns
	LE - OUTn	t _{PHL2}	$V_{IH} = V_{DD}$	-	80	100	ns
Time ("H" to "L")	OE - OUTn	V _{IL} =GND PE - OUTn t _{PHL3} R _{FXT} =930Ω	-	115	135	ns	
,	CLK-SDO	t _{PHL}	$V_L = 4.5V$	-	20	40	ns
	CLK	t _{w(CLK)}	VL =4.5V R _L =162Ω	20	-	-	ns
Time ("L" to "H") Propagation Delay Time ("H" to "L") Pulse Width Hold Time f Setup Time Maximum CLK Maximum CLK Output Rise Time of	LE	t _{w(L)}	C _L =10pF	20	-	-	ns
	ŌE	t _{w(OE)}	OL TOPI	250	-	-	ns
Hold Time t	for LE	t _{h(L)}		5	-	-	ns
Setup Time	for LE	t _{su(L)}		5	-	-	ns
Maximum CLK	Rise Time	t _r **		-	-	500	ns
Maximum CLK Fall Time		t _f **		-	-	500	ns
Output Rise Time of	Vout (turn off)	t _{or}		-	160	180	ns
Output Fall Time of	Vout (turn on)	t _{of}		-	70	90	ns

Switching Characteristics (V_{DD} =3.3V, T_A =25 $^{\circ}$ C)

Characteristic		Symbol	Condition	Min.	Тур.	Max.	Unit
	CLK-OUTn	t _{PLH1}	V _{DD} =3.3V	ı	80	100	ns
Propagation Delay	LE - OUTn	t _{PLH2}	V _{DS} =1.0V	ı	80	100	ns
Time ("L" to "H")	OE - OUTn	t _{PLH3}	$V_{IH} = V_{DD}$	-	115	135	ns
	CLK-SDO	t _{PLH}	V _{IL} =GND	-	20	40	ns
Propagation Delay	CLK- OUTn	t _{PHL1}	R _{EXT} =930Ω	-	100	120	ns
Time ("H" to "L")	LE - OUTn	t _{PHL2}	V _L =3.0V	-	80	100	ns

	OE - OUTn	t _{PHL3}	R _L =100Ω		115	135	ns
	CLK-SDO	t _{PHL}	C _L =10pF	-	20	40	ns
	CLK	t _{w(CLK)}		20	1	-	ns
Pulse Width	LE	t _{w(L)}		20	-	-	ns
	ŌĒ	t _{w(OE)}		300	-	-	ns
Hold Time for LE		t _{h(L)}		5	-	-	ns
Setup Time for LE		t _{su(L)}		5	1	-	ns
Maximum CLK Rise Time		t _r **		-	-	500	ns
Maximum CLK Fall Time		t _f **		-	-	500	ns
Output Rise Time of Vout (turn off)		t _{or}		-	160	180	ns
Output Fall Time of Vout (turn on)		t _{of}		-	70	90	ns

Timing Waveform

Application Circuits

Test Circuit for Electrical Characteristics

Test Circuit for Switching Characteristics

Package Dimension

SSOP24-3

Tape and Reel

Package Type	Units/ Reel	Reel /Inner Box	Inner Boxes/Outer Box	Units/Outer Box
SSOP24-3	4K	2	1	8K